Bicomplex formulation and Moyal deformation of (2+1)-dimensional Fordy-Kulish systems
نویسندگان
چکیده
منابع مشابه
Geometric Realizations of Fordy–kulish Nonlinear Schrödinger Systems
A method of Sym and Pohlmeyer, which produces geometric realizations of many integrable systems, is applied to the Fordy-Kulish generalized non-linear Schrödinger systems associated with Hermitian symmetric spaces. The resulting geometric equations correspond to distinguished arclength-parametrized curves evolving in a Lie algebra, generalizing the localized induction model of vortex filament m...
متن کاملFordy-Kulish model and spinor Bose-Einstein condensate
Fordy-Kulish model and spinor Bose-Einstein condensate V. A. Atanasov1,2 , V. S. Gerdjikov1 , G. G. Grahovski1,3 , N. A. Kostov1 1 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko chaussée, 1784 Sofia, Bulgaria 3 Laboratoire de Physique Théorique et Modélisation, Université de Cergy-Pontoise, 2 avenue A. Chauvin, F-95302 Cergy-Pontoise Cedex, Fra...
متن کاملDeformation Bicomplex of Module-algebras
Let H be a bialgebra. An H-module-algebra is an associative algebra A that is also an H-module such that the multiplication map on A becomes an H-module morphism. This algebraic structure arises often in algebraic topology, quantum groups [11, Chapter V.6], Lie and Hopf algebras theory [3, 16, 19], and group representations [1, Chapter 3]. For example, in algebraic topology, the complex cobordi...
متن کاملMoyal Deformation , Seiberg - Witten - Map , and Integrable Models
A covariant formalism for Moyal deformations of gauge theory and differential equations which determine Seiberg-Witten maps is presented. Replacing the ordinary product of functions by the noncommutative Moyal product, noncommutative versions of integrable models can be constructed. We explore how a Seiberg-Witten map acts in such a framework. As a specific example, we consider a noncommutative...
متن کاملDevelopment and Application of an ALE Large Deformation Formulation
This paper presents a complete derivation and implementation of the Arbitrary Lagrangian Eulerian (ALE) formulation for the simulation of nonlinear static and dynamic problems in solid mechanics. While most of the previous work done on ALE for dynamic applications was mainly based on operator split and explicit calculations, this work derives the quasi-static and dynamic ALE equations in its si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2001
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/34/12/305